Search results for " Pyrrolidines"

showing 2 items of 2 documents

Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases.

2013

While acetylcholine (ACh) and muscarinic receptors in the bladder are mainly known for their role in the regulation of smooth muscle contractility, in other tissues they are involved in tissue remodelling and promote cell growth and proliferation. In the present study we have used primary cultures of human detrusor smooth muscle cells (HDSMCs), in order to investigate the role of muscarinic receptors in HDSMC proliferation. Samples were obtained as discarded tissue from men >65 years undergoing radical cystectomy for bladder cancer and cut in pieces that were either immediately frozen or placed in culture medium for the cell culture establishment. HDSMCs were isolated from samples, propagat…

AtropineMalePyrrolidinesMessenger030232 urology & nephrologyGene ExpressionPhosphatidylinositol 3-Kinases0302 clinical medicineAged Atropine; pharmacology Benzofurans; pharmacology Carbachol; pharmacology Cell Proliferation Cells; Cultured Cholinergic Agonists; pharmacology Gene Expression Humans Male Mitogen-Activated Protein Kinases; metabolism Muscarinic Antagonists; pharmacology Myocytes; Smooth Muscle; metabolism Phosphatidylinositol 3-Kinases; metabolism Piperidines; pharmacology Pirenzepine; analogs /&/ derivatives/pharmacology Proto-Oncogene Proteins c-akt; metabolism Pyrrolidines; pharmacology RNA; Messenger; metabolism Receptors; Muscarinic; physiology Urinary Bladder; cytologyPiperidinesSmooth MuscleReceptorsMuscarinic acetylcholine receptor M5Muscarinic acetylcholine receptorCells CulturedCulturedMuscarinic acetylcholine receptor M3Muscarinic acetylcholine receptor M2Smooth muscle contractionMuscarinic acetylcholine receptor M1Receptors Muscarinic030220 oncology & carcinogenesisMitogen-Activated Protein KinasesAcetylcholinemedicine.drugmedicine.medical_specialtyCarbacholCellsMyocytes Smooth MuscleUrinary BladderMuscarinic AntagonistsBiologyCholinergic Agonists03 medical and health sciencesInternal medicineMuscarinicmedicineHumansRNA MessengerAgedBenzofuransCell ProliferationPharmacologyMyocytesPirenzepineEndocrinologyphysiologycytologyRNACarbacholanalogs /&/ derivatives/pharmacologymetabolismProto-Oncogene Proteins c-aktPharmacological research
researchProduct

Crystal structure of 5′′-(4-chlorobenzylidene)-4′-(4-chlorophenyl)-1′-methyltrispiro[acenapthylene-1,2′-pyrrolidine-3′,1′′-cyclohexane-3′′,2′′′-[1,3]…

2015

In the title compound, C36H29Cl2NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the acenaphthylene and cyclohexanone rings. The cyclohexanone ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the acenaphthylen-1-one ring system adopts a flattened envelope conformation, with the ketonic C atom as the flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclohexenone ring assumes a boat conformation. An intramolecular C—H...O hydrogen-bond interaction is present. In the crystal, molecules are linked by non-classical C—H...O hydrogen bonds, forming chains extending parallel to theaaxis.

Quantitative Biology::Biomoleculescrystal structureMathematics::Commutative AlgebraChemistryStereochemistryHydrogen bondCyclohexane conformationGeneral ChemistryCrystal structurehydrogen bondingCondensed Matter PhysicsRing (chemistry)ace­naphthyl­eneAcenaphthyleneData ReportsPyrrolidinelcsh:ChemistryCrystalHexanechemistry.chemical_compoundlcsh:QD1-999acenaphthyleneGeneral Materials Sciencedioxalanespiro pyrrolidinesActa Crystallographica Section E Crystallographic Communications
researchProduct